Abstract
We present here and in the companion paper (Part II) a general framework for the modeling of semiconductor device variability through the physics-based analysis of the small-change sensitivity. We consider a very general class of dynamic device operation, i.e., the periodic or quasi-periodic large signal (LS) time-varying regime, and we evaluate the sensitivity of both dc and harmonic components of the device dynamic working point with respect to process or physical device parameters. The proposed technique is based on the linearization of the physics-based device model around a nominal parameter, and extends to the dynamic case the already established Green’s function approach to the numerically efficient dc sensitivity analysis. As an example of application, we consider a class A GaAs MESFET microwave power amplifier; the sensitivity of the LS working point with respect to doping and gate work function variations is evaluated through the proposed approach and compared with the result of repeated LS amplifier analyses, showing that the numerically efficient small-change sensitivity approach provides reliable predictions for parameter variations up to 10% of the nominal value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.