Abstract
It is well-known that the conventional reproducing kernel particle method (RKPM) is unfavorable when dealing with the derivative type essential boundary conditions [1–3]. To remedy this issue a group of meshless methods in which the derivatives of a function can be incorporated in the formulation of the corresponding interpolation operator will be discussed. Formulation of generalized moving least squares (GMLS) on a domain and GMLS on a finite set of points will be presented. The generalized RKPM will be introduced as the discretized form of GMLS on a domain. Another method that helps to deal with derivative type essential boundary conditions is the gradient RKPM which incorporates the first gradients of the function in the reproducing equation. In present work the formulation of gradient RKPM will be derived in a more general framework. Some important properties of the shape functions for the group of methods under consideration are discussed. Moreover error estimates for the corresponding interpolants are derived. By generalizing the concept of corrected collocation method, it will be seen that in the case of employing each of the proposed methods to a BVP, not only the essential boundary conditions involving the function, but also the essential boundary conditions which involve the derivatives could be satisfied exactly at particles which are located on the boundary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.