Abstract
The infinite-dimensional information operator for the nuisance parameter plays a key role in semiparametric inference, as it is closely related to the regular estimability of the target parameter. Calculation of information operators has traditionally proceeded in a case-by-case manner and has often entailed lengthy derivations with complicated arguments. We develop a unified framework for this task by exploiting commonality in the form of semiparametric likelihoods. The general formula developed allows one to derive information operators with simple calculus and, if necessary at all, a minimal amount of probabilistic evaluation. This streamlined approach shows its simplicity and versatility in application to a number of existing models as well as a new model of practical interest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.