Abstract

Two distinct methods for synthesizing a signal from its short-time Fourier transform have previously been proposed. We call these methods the filter-bank summation (FBS) method and the overlap add (OLA) method. Each of these synthesis techniques has unique advantages and disadvantages in various applications due to the way in which the signal is reconstructed. In this paper we unify the ideas behind the two synthesis techniques and discuss the similarities and differences between these methods. In particular, we explicitly show the effects of modifications made to the short-time transform (both fixed and time-varying modifications are considered) on the resulting signal and discuss applications where each of the techniques would be most useful The interesting case of nonlinear modifications (possibly signal dependent) to the short-time Fourier transform is also discussed. Finally it is shown that a formal duality exists between the two synthesis methods based on the properties of the window used for obtaining the short-time Fourier transform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.