Abstract

This paper investigates the global convergence of trust region (TR) methods for solving nonsmooth minimization problems. For a class of nonsmooth objective functions called regular functions, conditions are found on the TR local models that imply three fundamental convergence properties. These conditions are shown to be satisfied by appropriate forms of Fletcher's TR method for solving constrained optimization problems, Powell and Yuan's TR method for solving nonlinear fitting problems, Zhang, Kim and Lasdon's successive linear programming method for solving constrained problems, Duff, Nocedal and Reid's TR method for solving systems of nonlinear equations, and El Hallabi and Tapia's TR method for solving systems of nonlinear equations. Thus our results can be viewed as a unified convergence theory for TR methods for nonsmooth problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.