Abstract

In recent years, confrontation with hardware Trojans has become a major concern due to various reasons including outsourcing. Such a growing threat is more pronounced in reconfigurable devices as they are used in widespread applications due to low design cost and short time-to-market. Besides their vulnerability to hardware Trojan attacks, SRAM-based reconfigurable devices are also significantly susceptible to faults originated by particle strikes. There have been various methods to mitigate either hardware Trojan attacks or faults. To our knowledge, however, no method has been presented that can integrate detecting, distinguishing, and mitigating faults and Trojans. In this paper, we present an efficient method for SRAM-based reconfigurable devices, which is able to perform Trojan detection while detecting and correcting both permanent faults (faults in SRAM configuration bits) and transient faults (faults which affect flip flops, logical elements, and wires) using a single controller circuitry. The efficiency of the proposed method is evaluated with a well-known benchmark implemented on commercial FPGAs. The results show that the availability and reliability of the proposed method are superior to the conventional triple modular redundancy method by more than 100%. The experiments also show that the proposed method improves the average area and area×delay overheads by 32% and 6%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.