Abstract

Aryl halides are a fundamental motif in synthetic chemistry, playing a critical role in metal-mediated cross-coupling reactions and serving as important scaffolds in drug discovery. Although thermal decarboxylative functionalization of aryl carboxylic acids has been extensively explored, the scope of existing halodecarboxylation methods remains limited, and there currently exists no unified strategy that provides access to any type of aryl halide from an aryl carboxylic acid precursor. Herein, we report a general catalytic method for direct decarboxylative halogenation of (hetero)aryl carboxylic acids via ligand-to-metal charge transfer. This strategy accommodates an exceptionally broad scope of substrates. We leverage an aryl radical intermediate toward divergent functionalization pathways: (1) atom transfer to access bromo- or iodo(hetero)arenes or (2) radical capture by copper and subsequent reductive elimination to generate chloro- or fluoro(hetero)arenes. The proposed ligand-to-metal charge transfer mechanism is supported through an array of spectroscopic studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.