Abstract

Content-based recommendation systems can provide recommendations for items for which little or no training data is available, but typically have lower accuracy than collaborative filtering systems. Conversely, collaborative filtering techniques often provide accurate recommendations, but fail on cold start items. Hybrid schemes attempt to combine these different kinds of information to yield better recommendations across the board.We describe unified Boltzmann machines, which are probabilistic models that combine collaborative and content information in a coherent manner. They encode collaborative and content information as features, and then learn weights that reflect how well each feature predicts user actions. In doing so, information of different types is automatically weighted, without the need for careful engineering of features or for post-hoc hybridization of distinct recommender systems.We present empirical results in the movie and shopping domains showing that unified Boltzmann machines can be used to combine content and collaborative information to yield results that are competitive with collaborative techniques in recommending items that have been seen before, and also effective at recommending cold-start items.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.