Abstract

BackgroundGenome-wide association studies (GWAS) have identified many common polymorphisms associated with complex traits. However, these associated common variants explain only a small fraction of the phenotypic variances, leaving a substantial portion of genetic heritability unexplained. As a result, searches for "missing" heritability are drawing increasing attention, particularly for rare variant studies that often require a large sample size and, thus, extensive sequencing effort. Although the development of next generation sequencing (NGS) technologies has made it possible to sequence a large number of reads economically and efficiently, it is still often cost prohibitive to sequence thousands of individuals that are generally required for association studies. A more efficient and cost-effective design would involve pooling the genetic materials of multiple individuals together and then sequencing the pools, instead of the individuals. This pooled sequencing approach has improved the plausibility of association studies for rare variants, while, at the same time, posed a great challenge to the pooled sequencing data analysis, essentially because individual sample identity is lost, and NGS sequencing errors could be hard to distinguish from low frequency alleles.ResultsA unified approach for estimating minor allele frequency, SNP calling and association studies based on pooled sequencing data using an expectation maximization (EM) algorithm is developed in this paper. This approach makes it possible to study the effects of minor allele frequency, sequencing error rate, number of pools, number of individuals in each pool, and the sequencing depth on the estimation accuracy of minor allele frequencies. We show that the naive method of estimating minor allele frequencies by taking the fraction of observed minor alleles can be significantly biased, especially for rare variants. In contrast, our EM approach can give an unbiased estimate of the minor allele frequency under all scenarios studied in this paper. A SNP calling approach, EM-SNP, for pooled sequencing data based on the EM algorithm is then developed and compared with another recent SNP calling method, SNVer. We show that EM-SNP outperforms SNVer in terms of the fraction of db-SNPs among the called SNPs, as well as transition/transversion (Ti/Tv) ratio. Finally, the EM approach is used to study the association between variants and type I diabetes.ConclusionsThe EM-based approach for the analysis of pooled sequencing data can accurately estimate minor allele frequencies, call SNPs, and find associations between variants and complex traits. This approach is especially useful for studies involving rare variants.

Highlights

  • Finding genomic variants associated with complex traits is one of the most important problems in modern genomics

  • This missing heritability problem has led to increasingly skeptical views of the common disease-common variant (CD-CV) hypothesis which predicts that common disease-causing alleles, or variants, will be found in all human populations that manifest a given disease

  • We show that the naive estimation of the allele frequency by the fraction of minor alleles in the reads can be significantly inflated, especially for rare variants, while the EM approach can give an unbiased estimate of the minor allele frequency in all situations we studied

Read more

Summary

Introduction

Finding genomic variants associated with complex traits is one of the most important problems in modern genomics. One frequently adopted approach to reduce sequencing cost in the search of rare variants is pooled sequencing, where mixtures of genetic materials from several individuals are grouped together to form a pool for a single sequencing While this design greatly lowers the sequencing cost, it makes it hard to distinguish true genetic polymorphisms from sequencing errors, estimate minor allele frequencies at the polymorphic loci, and perform association studies on the rare variants. A more efficient and cost-effective design would involve pooling the genetic materials of multiple individuals together and sequencing the pools, instead of the individuals This pooled sequencing approach has improved the plausibility of association studies for rare variants, while, at the same time, posed a great challenge to the pooled sequencing data analysis, essentially because individual sample identity is lost, and NGS sequencing errors could be hard to distinguish from low frequency alleles

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call