Abstract

The BDDC algorithm is extended to a large class of discontinuous Galerkin (DG) discretizations of second order elliptic problems. An estimate of $C(1+\log(H/h))^2$ is obtained for the condition number of the preconditioned system where $C$ is a constant independent of $h$ or $H$ or large jumps in the coefficient of the problem. Numerical simulations are presented which confirm the theoretical results. A key component for the development and analysis of the BDDC algorithm is a novel perspective presenting the DG discretization as the sum of elementwise „local” bilinear forms. The elementwise perspective allows for a simple unified analysis of a variety of DG methods and leads naturally to the appropriate choice for the subdomainwise local bilinear forms. Additionally, this new perspective enables a connection to be drawn between the DG discretization and a related continuous finite element discretization to simplify the analysis of the BDDC algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.