Abstract

In this study, we developed a general method to analytically tackle a kind of movable boundary problem from the viewpoint of energy variation. Having grouped the adhesion of a micro-beam, droplet and carbon nanotube (CNT) ring on a substrate into one framework, we used the developed line of reasoning to investigate the adhesion behaviors of these systems. Based upon the derived governing equations and transversality conditions, explicit solutions involving the critical parameters and morphologies for the three systems are successfully obtained, and then the parameter analogies and common characteristics of them are thoroughly investigated. The presented method has been verified via the concept of energy release rate in fracture mechanics. Our analyses provide a new approach for exploring the mechanism of different systems with similarities as well as for understanding the unity of nature. The analysis results may be beneficial for the design of nano-structured materials, and hold potential for enhancing their mechanical, chemical, optical and electronic properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.