Abstract

3GPP long term evolution (LTE) is a promising candidate for the next-generation wireless network, which is expected to achieve high spectrum efficiency by using advanced physical layer techniques and flat network structures. However, the LTE network still faces the problem of load imbalance as in GSM/WCDMA networks, and this may cause significant deterioration of system performance. To deal with this problem, mobility load balancing (MLB) has been proposed as an important use case in 3GPP self-organizing network (SON), in which the serving cell of a user can be selected to achieve load balancing rather than act as the cell with the maximum received power. Furthermore, the LTE network aims to serve users with different quality-of-service (QoS) requirements, and the network-wide objective function for load balancing is distinct for different kinds of users. Thus, in this paper, a unified algorithm is proposed for MLB in the LTE network. The load balancing problem is first formulated as an optimization problem with the optimizing variables being cell-user connections. Then the complexity and overhead of the optimal solution is analyzed and a practical and distributed algorithm is given. After that, the proposed algorithm is evaluated for users with different kinds of QoS requirements, i.e., guaranteed bit rate (GBR) users with the objective function of load balance index and non-GBR (nGBR) users with the objective function of total utility, respectively. Simulation results show that the proposed algorithm leads to significantly balanced load distribution for GBR users to decrease the new call blocking rate, and for nGBR users to improve the cell-edge throughput at the cost of only slight deterioration of total throughput.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call