Abstract

In this note, we propose a unified framework for adaptive iterative learning control design for uncertain nonlinear systems. It is shown that if a Lyapunov based adaptive control law is available for the system under consideration and the Lyapunov function satisfies certain conditions, it is straightforward to extend the adaptive controller to handle repetitive systems operating over a finite time interval. According to the value of a certain parameter γ, the parametric adaptation law can be a pure time-domain adaptation, a pure iteration-domain adaptation or a combination of both.A pure iteration-domain adaptation is described by a difference equation, a pure time-domain adaptation is described by a differential equation, and a combination of both is described by a differential-difference equation. The advantages and disadvantages of the three possible adaptation types are discussed and some illustrative examples are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.