Abstract

A novel optical frequency conversion device that successfully demonstrates optical frequency conversion and unidirectional transmission of optical signals has been designed and fabricated. The device is composed of a gain region and saturable absorber region with monolithically integrated distributed Bragg reflector (DBR) mirrors with different coupling coefficients. The device structure is optimized to achieve three functions: 1) unidirectional light output, 2) converted-light wavelength tuning, and 3) optically triggered optical frequency conversion. The output power of converted light from the light input-end facet of the device is 30 dB smaller than that from the output-end facet, and the converted light wavelength can be scanned over 4 nm without a bias current to the input-end DBR region, and it is widened to 7.8 nm by injecting current to that region. The device emits converted light only when light input is injected and optical signals are unidirectionally transmitted, and its response frequency is estimated to be 0.8 GHz. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.