Abstract
To reduce the cost of bulk power transmission using voltage source converter high-voltage DC (HVDC) technology, a unidirectional hybrid converter is proposed, where a diode rectifier (DR) and a modular multilevel converter (MMC) based on full-bridge (FB) submodules are connected in series on DC side. The FB-MMC controls its DC voltage to regulate the transmitted power. The majority of the power transmission is via the DR considering its cost and efficiency superiority and only low power rating FB-MMC is required. A thyristor valve is equipped at the DC side of the FB-MMC to prevent potential overcharge of the FB submodules during DC faults. Compared to conventional MMCs, losses can potentially be reduced by around 20%. An active power controller is proposed to regulate the DC voltage of the FB-MMC so as to control the transmitted power. With the inverter station controlling its DC terminal voltage constant, the FB-MMC increases the output DC voltage to increase the transmitted power and vice versa. To alleviate overvoltage of the HVDC link during AC grid faults of the inverter station, a dynamic DC voltage limiter is designed to actively reduce the DC output voltage of the FB-MMC. Simulation results confirm the proposed converter operation and control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Emerging and Selected Topics in Power Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.