Abstract
We propose a Ulm-like method for solving inverse eigenvalue problems, which avoids solving approximate Jacobian equations comparing with other known methods. A convergence analysis of this method is provided and the R-quadratic convergence property is proved under the assumption of the distinction of given eigenvalues. Numerical experiments as well as the comparison with the inexact Newton-like method are given in the last section.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.