Abstract
Verification planning is a sequential decision-making problem that specifies a set of verification activities (VAs) and correction activities (CAs) at different phases of system development. While VAs are used to identify errors and defects, CAs also play important roles in system verification as they correct the identified errors and defects. However, current planning methods only consider VAs as decision choices. Because VAs and CAs have different activity spaces, planning a joint verification-correction strategy (JVCS) is challenging, especially for large-scale systems. Here, we introduce a UCB-based tree search approach to search for near-optimal JVCSs. First, verification planning is simplified as repeatable bandit problems and an upper confidence bound rule for repeatable bandits (UCBRBs) is presented with the optimal regret bound. Next, a tree search algorithm is proposed to search for feasible JVCSs. A tree-based ensemble learning model is also used to extend the tree search algorithm to handle local optimality issues. The proposed approach is evaluated on the notional case of a communication system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Systems, Man, and Cybernetics: Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.