Abstract

Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs.

Highlights

  • Sensors of the physical world, computing systems and information networks are the basic elements of a rapidly approaching future in which the realms of physical objects and digital information will merge, paving the way to a new generation of smart applications in a wide range of areas such as eHealth, logistics, intelligent transportation, environmental monitoring, smart grids, smart metering and home automation

  • While acknowledging the central role that the Semantic Sensor Web is set to play in the future Internet of Things (IoT), in this paper we present work that explores a first step of drawing the Ubiquitous Sensor Network (USN)-Platform toward SSW

  • We analyzed the overhead of smart device observations when including semantic information, and evaluated the performance of the Observation Storage extended with the Sesame SPARQL Endpoint

Read more

Summary

Introduction

Sensors of the physical world, computing systems and information networks are the basic elements of a rapidly approaching future in which the realms of physical objects and digital information will merge, paving the way to a new generation of smart applications in a wide range of areas such as eHealth, logistics, intelligent transportation, environmental monitoring, smart grids, smart metering and home automation. The Internet of Things (IoT) [1] and related ideas picture smart devices and connected objects acquiring meaningful information about their environment and communicating it to other devices, objects and people, through a ―global network infrastructure based on standard and interoperable communication protocols where physical and virtual things are seamlessly integrated into the information network‖ [1] For this vision to come to fruition advancements are needed in two fundamental areas: first, the integration and accessibility of the heterogeneous and ever growing number of sensor and actuator networks; and second, the meaningful organization of the ocean of data coming from these networks and the derivation of further knowledge from it. As stated by the recently created Standard Working Group on Sensor Web for

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call