Abstract

U87-EGFRvIII is a U87 glioma cell line that overexpresses epidermal growth factor receptor variant III (EGFRvIII). In the present study, we investigated whether a DNA aptamer selected against U87-EGFRvIII using cell-based systematic evolution of ligands by exponential enrichment (cell-SELEX) could deliver c-Met small interfering RNA (siRNA) into U87-EGFRvIII cells and silence the targeted gene expression. The selected biotinylated aptamer (BA) was coupled to biotinylated c-Met siRNA by streptavidin to deliver siRNA into U87-EGFRvIII cells. c-Met siRNA, transfected with lipofectamine 2000, served as a positive control, while control siRNA, transferred with BA, served as a negative control. Western blotting was performed to detect changes in the c-Met protein expression, and MTT and Annexin V-fluorescein isothiocyanate/propidium iodine assays were used to determine changes in the proliferation and apoptosis of U87-EGFRvIII cells, respectively. Similar to the liposome-mediated group, U87-EGFRvIII cells that were transfected with BA-c-Met siRNA experienced a significant decrease in the c-Met protein expression (P<0.05). There were also significant increases in the apoptotic rate (P<0.05) and inhibition rate of cell growth (P<0.01) compared with the negative control group, indicating that BA could deliver c-Met siRNA into U87-EGFRvIII and result in target gene silencing. In conclusion, the results demonstrated that this DNA aptamer, obtained through cell-SELEX, can be used as an efficient and targeted carrier for siRNA delivery, providing a novel approach and strategy for the targeted combination therapy of glioblastoma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call