Abstract

The spliceosome, a large complex containing five conserved small ribonucleoprotein particles (snRNPs) U1, U2, U4, U5 and U6, plays important roles in precursor messenger RNA splicing. However, the function and mechanism of the spliceosomal snRNPs have not been thoroughly studied in the pathogenic yeast Cryptococcus deneoformans. In this study, we identified a U2A′ homologous protein as a component of the cryptococcal U2 snRNP, which was encoded by the LEA1 gene. Using the “suicide” CRISPR-Cas9 tool, we deleted the LEA1 gene in C. deneoformans JEC21 strain and obtained the disruption mutant lea1Δ. The mutant showed a hypersensitivity to 0.03 % sodium dodecyl sulfate, as well as disordered chitin distribution in cell wall observed with Calcofluor White staining, which collectively illustrated the function of U2A′ in maintenance of cell wall integrity. Further examination showed that lea1Δ displayed a decreased tolerance to lower or elevated temperatures, osmotic pressure and oxidative stress. The lea1Δ still exhibited susceptibility to geneticin and 5-flucytosine, and increased resistance to ketoconazole. Even, the mutant had a reduced capsule, and the virulence of lea1Δ in the Galleria mellonella model was decreased. Our results indicate that the U2A′-mediated RNA-processing has a particular role in the processing of gene products involved in response to stresses and virulence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call