Abstract

Despite their equal stoichiometry in spliceosomes, U1 snRNP (U1) is typically the most abundant snRNP in vertebrates. What regulates U1 over-abundance and snRNP repertoire in general is unknown. Sm core assembly is a key step in snRNP biogenesis mediated by the SMN complex. All pre-snRNAs are delivered by the snRNA-specific RNA-binding protein (RBP) Gemin5 to join SMN-Gemin2-recruited Sm proteins. Here, we find that the U1-specific RBP U1-70K bridges pre-U1 to SMN-Gemin2-Sm, establishing an additional, Gemin5-independent Sm core assembly pathway. We show that U1-70K hijacks SMN-Gemin2-Sm, enhancing U1’s and inhibiting other snRNAs’ Sm core assembly, thereby promoting U1 over-abundance and regulating snRNP repertoire. Ubiquitous SMN-Gemin2’s surprising ability to facilitate transactions between different RBPs and RNAs explains its puzzling multi-RBP valency and myriad transcriptome perturbations associated with SMN’s deficiency in neurodegenerative spinal muscular atrophy. We propose that SMN-Gemin2 is a versatile RNP exchange that functions broadly in RNA metabolism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call