Abstract

This paper aims to introduce an innovative approach to semantic segmentation by leveraging a convolutional neural network (CNN) for predicting the shape and pose parameters of the left ventricle (LV). Our approach involves a modified U-Net architecture with a regression layer as the final stage, as opposed to the traditional classification layer. This modification allows us to predict all the shape and pose parameters of a statistical shape model, including rotation, translation, scale, and deformation. The adapted U-Net is trained using data from a point distribution model (PDM) of the LV. The experimental results demonstrate a mean Dice coefficient of 0.82 on good quality images, and 0.66 including mean and low-quality images. Our approach successfully overcomes a common issue encountered in CNN-based semantic segmentation. Unlike the inaccurate pixel classification that often leads to unwanted blobs, our CNN generates statistically valid shapes. These shapes hold significant potential in initializing other methods, such as active shape models (ASMs). Our novel CNN-based approach provides a novel solution for semantic segmentation, offering shapes and pose parameters that can enhance the accuracy and reliability of subsequent medical image analysis methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.