Abstract
Tyrosinase is widely regarded as an important biomarker for melanocytic and liver cancer. However, most currently reported tyrosinase probes have been focused on malignant melanoma study, and few tyrosinase probe have been applied for liver cancer investigation. Herein, we developed a novel probe HFC-TYR for sensitive and selective tracking of tyrosinase activity at enzyme and cellular level, and investigated its application for liver cancer diagnosis. As expected, HFC-TYR has excellent response ability for tyrosinase sensing at enzyme level, such as large Stokes shift (170 nm), high fluorescence enhancement (178-fold), low detection limit (0.12 U/mL), which indicates its potential for efficient identification of endogenous tyrosinase activity at cellular levels. Unsurprisingly, HFC-TYR is proved to be able detect endogenous tyrosinase levels in various living cells. More importantly, HFC-TYR is successfully used to distinguish HepG2 cells from other cells (SKOV3, HeLa and 293T), indicating that tyrosinase is overexpressed in HepG2 cells and HFC-TYR can specifically identify HepG2 cells at cellular level. Meanwhile, HFC-TYR is able to further monitor the endogenous tyrosinase activity in zebrafish models. Therefore, all the findings confirm that HFC-TYR has the application potential of liver cancer diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.