Abstract

A key feature of escape responses is the fast translation of sensory information into a coordinated motor output. In C. elegans, anterior touch initiates a backward escape response in which lateral head movements are suppressed. Here, we show that tyramine inhibits head movements and forward locomotion through the activation of a tyramine-gated chloride channel, LGC-55. lgc-55 mutant animals have defects in reversal behavior and fail to suppress head oscillations in response to anterior touch. lgc-55 is expressed in neurons and muscle cells that receive direct synaptic inputs from tyraminergic motor neurons. Therefore, tyramine can act as a classical inhibitory neurotransmitter. Activation of LGC-55 by tyramine coordinates the output of two distinct motor programs, locomotion and head movements that are critical for a C. elegans escape response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call