Abstract
In this paper, we present a novel approach for realising the vision of ambient intelligence in ubiquitous computing environments (UCEs). This approach is based on embedding intelligent agents in UCEs. These agents use type-2 fuzzy systems which are able to handle the different sources of uncertainty and imprecision in UCEs to give a good response. We have developed a novel system for learning and adapting the type-2 fuzzy agents so that they can realise the vision of ambient intelligence by providing a seamless, unobtrusive, adaptive and responsive intelligence in the environment that supports the activities of the user. The user’s behaviours and preferences for controlling the UCE are learnt online in a non-intrusive and life long learning mode so as to control the UCE on the user’s behalf. We have performed unique experiments in which the type-2 intelligent agent has learnt and adapted online to the user’s behaviour during a stay of five days in the intelligent Dormitory (iDorm) which is a real UCE test bed. We will show how our type-2 agents can deal with the uncertainty and imprecision present in UCEs to give a very good response that outperforms the type-1 fuzzy agents while using smaller rule bases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.