Abstract

Protein secretion systems are crucial mediators of bacterial interactions with other organisms. Among them, the type VI secretion system (T6SS) is widespread in Gram-negative bacteria and appears to inject toxins into competitor bacteria and/or eukaryotic cells. Major human pathogens, such as Vibrio cholerae, Burkholderia and Pseudomonas aeruginosa, express T6SSs. Bacteria prevent self-intoxication by their own T6SS toxins by producing immunity proteins, which interact with the cognate toxins. We describe here an environmental P. fluorescens strain, MFE01, displaying an uncommon oversecretion of Hcp (hemolysin-coregulated protein) and VgrG (valine-glycine repeat protein G) into the culture medium. These proteins are characteristic components of a functional T6SS. The aim of this study was to attribute a role to this energy-consuming overexpression of the T6SS. The genome of MFE01 contains at least two hcp genes (hcp1 and hcp2), suggesting that there may be two putative T6SS clusters. Phenotypic studies have shown that MFE01 is avirulent against various eukaryotic cell models (amebas, plant or animal cell models), but has antibacterial activity against a wide range of competitor bacteria, including rhizobacteria and clinical bacteria. Depending on the prey cell, mutagenesis of the hcp2 gene in MFE01 abolishes or reduces this antibacterial killing activity. Moreover, the introduction of T6SS immunity proteins from S. marcescens, which is not killed by MFE01, protects E. coli against MFE01 killing. These findings suggest that the protein encoded by hcp2 is involved in the killing activity of MFE01 mediated by effectors of the T6SS targeting the peptidoglycan of Gram-negative bacteria. Our results indicate that MFE01 can protect potato tubers against Pectobacterium atrosepticum, which causes tuber soft rot. Pseudomonas fluorescens is often described as a major PGPR (plant growth-promoting rhizobacterium), and our results suggest that there may be a connection between the T6SS and the PGPR properties of this bacterium.

Highlights

  • Bacteria have developed an arsenal of mechanisms, including secretion systems to enable them to resist the various stresses generated by their environment

  • T6SS gene clusters differ between bacterial species in terms of gene order and orientation, but all have a conserved group of 13 essential genes, the ‘‘core components’’ [4,5,6]

  • The T6SS is implicated in virulence in some human pathogens, including Vibrio cholerae, Burkholderia pseudomallei, Aeromonas hydrophila, Acinetobacter baumannii, and Pseudomonas aeruginosa [6,10,11,12,13,14,15]

Read more

Summary

Introduction

Bacteria have developed an arsenal of mechanisms, including secretion systems to enable them to resist the various stresses generated by their environment. The most recently described secretion system in the Gram-negative Proteobacteriaceae is the type VI secretion system (T6SS) [1,2]. This protein complex releases virulence factors into the extracellular medium or transports them directly into the target cell. The Hcp and VgrG proteins are released into the culture medium by T6SS activity. This release provides evidence that the T6SS apparatus is functional [7]. The T6SS seems to consist of a needle-like membrane-puncturing device similar to a bacteriophage tail.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call