Abstract
Higher-order abstract syntax (HOAS) is a simple, powerful technique for implementing object languages, since it directly supports common and tricky routines dealing with variables, such as capture-avoiding substitution and renaming. This is achieved by representing binders in the object-language via binders in the meta-language. However, enriching functional programming languages with direct support for HOAS has been a major challenge, because recursion over HOAS encodings requires one to traverse lambda-abstractions and necessitates programming with open objects. We present a novel type-theoretic foundation based on contextual modal types which allows us to recursively analyze open terms via higher-order pattern matching. By design, variables occurring in open terms can never escape their scope. Using several examples, we demonstrate that our framework provides a name-safe foundation to operations typically found in nominal systems. In contrast to nominal systems however, we also support capture-avoiding substitution operations and even provide first-class substitutions to the programmer. The main contribution of this paper is a syntax-directed bi-directional type system where we distinguish between the data language and the computation language together with the progress and preservation proof for our language.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.