Abstract
Discretionary Access Control (DAC) systems provide powerful resource management mechanisms based on the selective distribution of capabilities to selected classes of principals. We study a type-based theory of DAC models for a process calculus that extends Cardelli, Ghelli and Gordon's pi-calculus with groups (Cardelliet al. 2005). In our theory, groups play the role of principals and form the unit of abstraction for our access control policies, and types allow the specification of fine-grained access control policies to govern the transmission of names, bound the (iterated) re-transmission of capabilities and predicate their use on the inability to pass them to third parties. The type system relies on subtyping to achieve a selective distribution of capabilities to the groups that control the communication channels. We show that the typing and subtyping relationships of the calculus are decidable. We also prove a type safety result, showing that in well-typed processes all names:(i)flow according to the access control policies specified by their types; and(ii)are received at the intended sites with the intended capabilities.We illustrate the expressive power and the flexibility of the typing system using several examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.