Abstract

Abstract In order to assess the relationship between metallicity and exoplanetary systems, we compare the abundances of AF-type main-sequence stars with debris disk properties assessed using Herschel observations of an unbiased survey of nearby stars. Hot stars are not as commonly observed, given their unique constraints in data reduction, lack of metal lines, and “astrophysical noise” from rotation speed. Here, we address that deficiency using new and archival spectra of 83 AF-type stars. We measure the abundances of a few species in addition to Fe in order to classify the stars with Ap/Am or Lambda Boo signatures. Lambda Boo stars have a chemical signature of solar-abundant volatile species and sub-solar refractory abundances that is hypothesized to be altered by the pollution of volatiles. Overall, we see no correlation between debris disks and metallicity, primarily because the sample size is cut significantly when using only reliable fits to the spectroscopic data. The abundance measured from the Mg ii 4481 blend is a useful diagnostic because it can be reliably measured at large v·sin(i) and is found to be lower around stars with bright debris disks. We find that Lambda Boo stars have brighter debris disks compared to a bias-free sample of AF stars. The trend with disk brightness and Mg abundances suggests pollution effects can be significant and used as a marker for the stability of planetary systems. We explore trends with other species, such as with the C/O ratios, but are significantly limited by the low number of reliable detections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.