Abstract
The paper proposes a type of symmetrical flexure hinge displacement amplification mechanism, which is based on the differential lever to effectively improve the displacement output stroke of the PZT and reduce the additional displacement. In addition to describes the working principle of the differential displacement amplification, it establishes the semi-model of the micro-displacement amplification mechanism according to the symmetrical structure. The stiffness, displacement loss, and natural frequency of the amplification mechanism are simulated by finite element analysis (FEA). Simultaneously, build the mathematical model of amplification ratio to obtain the optimal driving frequency when the natural frequency is 930.58 Hz. The maximum output displacement of the designed mechanism is 313.05 µm and the amplification ratio is 6.50. Due to the symmetrical structure, the output additional displacement of the whole amplification mechanism is small.It provides a scientific basis for further improving the positioning accuracy of the micro/nano drive control system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.