Abstract

In this paper, a unified scheme is proposed for solving the classical shortest path problem and the generalized shortest path problem, which are highly nonlinear. Particularly, the generalized shortest path problem is more complex than the classical shortest path problem since it requires finding a shortest path among the paths from a vertex to all the feasible destination vertices. Different from existing results, inspired by the optimality principle of Bellman’s dynamic programming, we formulate the two types of shortest path problems as linear programs with the decision variables denoting the lengths of possible paths. Then, biased consensus neural networks are adopted to solve the corresponding linear programs in an efficient and distributed manner. Theoretical analysis guarantees the performance of the proposed scheme. In addition, two illustrative examples are presented to validate the efficacy of the proposed scheme and the theoretical results. Moreover, an application to mobile robot navigation in a maze further substantiates the efficacy of the proposed scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.