Abstract

• A two-variable first-order plate theory considering in-plane rotation is presented. • Analytical solutions for various boundary conditions are obtained in bending, buckling and free vibration analyses. • The in-plane rotation occurs close to the edges, so it should be considered to correctly predict the responses of plates. This paper presents a two-variable first-order shear deformation theory considering in-plane rotation for bending, buckling and free vibration analyses of isotropic plates. In recent studies, a simple first-order shear deformation theory (S-FSDT) was developed and extended. It has only two variables by separating the deflection into bending and shear parts while the conventional first-order shear deformation theory (FSDT) has three variables. However, the S-FSDT provides incorrect predictions for the transverse shear forces on the insides and the twisting moments at the boundaries except simply supported plates since it does not consider in-plane rotation. The present theory also has two variables but considers in-plane rotation such that it is able to correctly predict the responses of plates with any boundary conditions. Analytical solutions are obtained for rectangular plates with two opposite edges that are simply supported, with the other edges having arbitrary boundary conditions. Numerical results of deflections, stress resultants, buckling loads and natural frequencies are presented with the FSDT, the S-FSDT and the present theory. Comparative studies demonstrate the effects of in-plane rotation and the accuracy of the present theory in predicting the bending, buckling and free vibration responses of isotropic plates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call