Abstract

Discrete event material flow simulation tools have long been offering real time 3D visualization. This feature allows less experienced users to analyze the underlying system. Beyond this, visualization is not used to interact with the simulated (underlying manufacturing) system to improve or control the material flow, especially under disturbances. This paper presents a simulation based 2-tier framework, which seeks to control or improve material flow by means of real time user immersive visualization. The first tier uses static optimization to compute the material flow by selecting from a large number of alternative policies based on deterministic disturbances. The second tier is a reactive algorithm which computes solutions for probabilistic disturbances. The results of the two tiers are used for interacting with the underlying system using visualization. We show that the proposed system is able to handle complex alternative policies, which supports interactive analysis of 3D material flow simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.