Abstract

The thermochemical two-step water splitting cycle was examined by using an iron oxide supported on yttrium-stabilized, cubic zirconia (YSZ) as the working material, for the purpose of directly converting solar high-temperature heat to clean hydrogen energy. In the first step of the cycle, the YSZ-supported Fe3O4 was thermally decomposed to the reduced phase at 1400 °C under an inert atmosphere. The reduced solid phase was oxidized back to the original phase (the YSZ-supported Fe3O4) with steam to generate hydrogen below 1000 °C. A new redox pair examined by others was found to serve as the working solid material on this YSZ-supported Fe3O4, as follows. The Fe3O4 reacted with YSZ to produce an Fe2+-containing ZrO2 phase by releasing oxygen molecules in the first step: the Fe2+ ions entered into cubic YSZ lattice. In the second step, the Fe2+-containing YSZ generated hydrogen via steam splitting to reproduce Fe3O4 on the cubic YSZ support. This cyclic reaction could be repeated with a good repeatability of the reaction below 1400 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.