Abstract

Low Pt-loaded graphene nanocomposites were prepared using a two-step reduction process. Graphene dispersion was first prepared from graphene oxide using hydrazine hydrate as a reducing agent. Pt-reduced graphene oxide composites were then synthesized in the aqueous graphene dispersion at 90 °C without the need for another reductant. Pt/graphene composite films were then deposited on fluorine-doped tin oxide substrates using a simple drop-casting method at room temperature and subsequently used as counter electrodes (CEs) in dye-sensitized solar cells (DSSCs). Cyclic voltammetry and electrical impedance analysis show that the composite electrodes have high electrocatalytic activity toward iodide/triiodide reduction. The energy conversion efficiency of the Pt/graphene CE-based DSSC was found to be 1.9 % lower than that of cells with a Pt-based CE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.