Abstract

In this paper, we study face hallucination, or synthesizing a high-resolution face image from low-resolution input, with the help of a large collection of high-resolution face images. We develop a two-step statistical modeling approach that integrates both a global parametric model and a local nonparametric model. First, we derive a global linear model to learn the relationship between the high-resolution face images and their smoothed and down-sampled lower resolution ones. Second, the residual between an original high-resolution image and the reconstructed high-resolution image by a learned linear model is modeled by a patch-based nonparametric Markov network, to capture the high-frequency content of faces. By integrating both global and local models, we can generate photorealistic face images. Our approach is demonstrated by extensive experiments with high-quality hallucinated faces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.