Abstract

This paper presents a two-step ADC architecture for high dynamic range, high sensitivity image sensor. The proposed two-step ADC architecture works in two phases: the coarse quantization phase in each pixel, digital integration technique is applied to increase the well capacity as well as system’s dynamic range, and a capacitive transimpedence amplifier (CTIA) scheme is employed to achieve high sensitivity; The fine quantization phase in the column which reduces the bit width of the pixel-level ADC, pixel-level ADC’s noise and layout area are reduced consequently. The proposed two-step ADC with 18 bits is designed in 0.18 μm standard CMOS process. The optimized assignment for the bit width of pixel-level ADC and column paralleled ADC is applied. The simulation shows the signal to noise ratio (SNR) is 93.5 dB. The dynamic range is 108 dB. The least sensible electrons are 781 e-. The simulation results indicate the proposed twostep ADC is suitable for high dynamic range, high sensitivity image sensor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call