Abstract

Wireless technology is growing at a fast rate to accommodate the expanding user demands. Currently, the radio frequency (RF) spectrum is overcrowded. Hence, it is more susceptible to signal fratricide and interference. To enhance spectrum access, in-band full duplex systems are implemented to achieve simultaneous transmission and reception (STAR) and double the spectral efficiency. However, STAR systems require suppression of the high power transmit signals that can leak into the receiver chain. This type of self-interference (SI) can significantly reduce the receiver.s dynamic range and often leads to its desensitization. Therefore, successful STAR implementation requires considerable isolation between the transmitter and receiver to reduce the SI signal. To do so, RF self-interference cancellation (RFSIC) stages are considered. In this paper, we present a two-stage SIC system that includes transmit and receive antennas isolation and RFSIC filter stages. Notably, the isolation between the transmit and receive antennas is based on a novel symmetric suppression technique. The RFSIC filter is based on a hybrid finite impulse response (FIR) filter and resonator architecture. Adding a resonator to the FIR filter provides improved matching to approximate and suppress the direct SI coupling. Our design achieves <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\sim$</tex-math></inline-formula> 52 dB isolation on average across a 500 MHz bandwidth ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">viz.</i> 1-1.5 GHz) in simulation. Simulation results show a minimum cancellation of 41 dB and a maximum cancellation of 65 dB. A prototype was fabricated and tested, showing an average of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\sim$</tex-math></inline-formula> 44 dB cancellation which is in good agreement with our simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.