Abstract
We propose a two-stage model for time series data of counts from multiple locations. This method fits first-stage model(s) using the technique of iteratively weighted filtered least squares (IWFLS) to obtain location-specific intercepts and slopes, with possible lagged effects via polynomial distributed lag modeling. These slopes and/or intercepts are then taken to a second-stage mixed-effects meta-regression model in order to stabilize results from various locations. The representation of the models from the stages into a combined mixed-effects model, issues of inference and choices of the parameters in modeling the lag structure are discussed. We illustrate this proposed model via detailed analysis on the effect of air pollution on school absenteeism based on data from the Southern California Children's Health Study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.