Abstract
Nurse scheduling is a critical issue in the management of emergency department. Under the intense work environment, it is imperative to make quality nurse schedules in a most cost and time effective way. To this end, a spreadsheet-based two-stage heuristic approach is proposed for the nurse scheduling problem (NSP) in a local emergency department. First, an initial schedule satisfying all hard constraints is generated by the simple shift assignment heuristic. Second, the sequential local search algorithm is employed to improve the initial schedules by taking soft constraints (nurse preferences) into account. The proposed approach is benchmarked with the existing approach and 0–1 programming. The contribution of this paper is twofold. First, it is one of a few studies in nurse scheduling literature using heuristic approach to generate nurse schedules based on Excel spreadsheet. Therefore, users with little knowledge on linear programming and computer sciences can operate and change the scheduling algorithms easily. Second, while most studies on nurse scheduling are situated in hospitals, this paper attempts to bridge the research gap by investigating the NSP in the emergency department where the scheduling rules are much more restrictive due to the intense and dynamic work environment. Overall, our approach generates satisfactory schedules with higher level of user-friendliness, efficiency, and flexibility of rescheduling as compared to both the existing approach and 0–1 programming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.