Abstract

The decision whether to use all the available machines in the shop becomes very relevant when the capacity exceeds the demand. In such cases, it might be optimal to use only a subset of the machines. We study this option in a two-stage flowshop environment. Jobs are assumed to be identical, and are processed in batches, where a machine-dependent setup time is required when starting a new batch. The objective function is minimum makespan. We introduce an exact efficient dynamic programming algorithm, which is shown numerically to be able to solve medium size instances in very reasonable time. For the solution of large instances, we propose an asymptotically optimal heuristic procedure and a lower bound on the makespan value, which produce extremely small optimality gaps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.