Abstract

The macroscopic model governing coupled electro-chemo-mechanical phenomena in expansive clays is revisited within a rigorous homogenization procedure applied to the microscopic governing equations which describe the local interaction between charged clay particles and a binary monovalent aqueous electrolyte solution. The up-scaling of the microscopic electro-hydro-dynamics leads to a two-scale approach wherein the macroscopic model appears governed by a fully coupled form of Onsager’s reciprocity relations, mass conservation equations and a modified Terzaghi’s effective stress principle. In addition, the two-scale approach provides microscopic representations for the effective coefficients which are exploited herein to obtain further insight in the constitutive behavior of the electrochemical parameters and the swelling pressure. Among other effects, we show that these microscopic closure relations are mainly dictated by the spatial variability of a microscale electric potential which satisfies a local version of the Poisson–Boltzmann problem in a periodic unit cell, The proposed framework allows to address various relevant still open issues regarding the constitutive behavior of swelling systems, Among them we give particular emphasis on the analysis of the influence of the fluctuation and distortion of the electrical double layer upon the magnitude of the electrochemical coefficients and the precise local conditions for the validity of the symmetry of Onsager’s relations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.