Abstract

A test for the equality of error distributions in two nonparametric regression models is proposed. The test statistic is based on comparing the empirical characteristic functions of the residuals calculated from independent samples of the models. The asymptotic null distribution of the test statistic cannot be used to estimate its null distribution because it is unknown, since it depends on the unknown common error distribution. To approximate the null distribution, a weighted bootstrap estimator is studied, providing a consistent estimator. The finite sample performance of this approximation as well as the power of the resulting test are evaluated by means of a simulation study. The procedure can be extended to testing for the equality of $$d>2$$ error distributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.