Abstract
Powerful entropy-based tests for normality, uniformity and exponentiality have been well addressed in the statistical literature. The density-based empirical likelihood approach improves the performance of these tests for goodness-of-fit, forming them into approximate likelihood ratios. This method is extended to develop two-sample empirical likelihood approximations to optimal parametric likelihood ratios, resulting in an efficient test based on samples entropy. The proposed and examined distribution-free two-sample test is shown to be very competitive with well-known nonparametric tests. For example, the new test has high and stable power detecting a nonconstant shift in the two-sample problem, when Wilcoxon's test may break down completely. This is partly due to the inherent structure developed within Neyman-Pearson type lemmas. The outputs of an extensive Monte Carlo analysis and real data example support our theoretical results. The Monte Carlo simulation study indicates that the proposed test compares favorably with the standard procedures, for a wide range of null and alternative distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.