Abstract
In customer-driven design of systems or products, one has performance targets in mind and would like to identify system design parameters that yield the target performance vector. Since most simulation models predict performance given design parameter values, this identification must be done iteratively through an optimization search procedure. In some cases it would be preferable to find design parameter values directly via an explicit inverse model. Regression and other forms of approximation `metamodels' provide estimates of simulation model outputs as a function of design parameters. It is possible to design fitting experiments (DOE's) that allow simultaneous fitting of both forward and inverse metamodels. This paper discusses the potential for this strategy and shows a simple two-phase DOE strategy using a maxi-min measure of DOE quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.