Abstract

The establishment of a mathematical model for the ion exchange process is key to creating a theoretical basis for the mining of ion-adsorption type rare earth ores. Ore samples from Xinfeng, Xunwu and Anyuan were used as the test ore samples in the present study and equilibrium batch tests of ore sample leaching using various ammonium sulfate concentrations were performed. The results show that, after leaching, there is a negative exponential relationship between the ratio of the solid-phase rare earth ion concentration to the aqueous-phase rare earth ion concentration and the initial ammonium ion concentration. However, there is a linear relationship between the natural logarithm of the ratio of the solid-phase ammonium ion concentration to the aqueous-phase ammonium ion concentration and the initial ammonium ion concentration. Based on the above two functional relationships, a two-parameter model for the equilibrium ion exchange process of ion-adsorption type rare earth ores was established. Using the established model to analyze the test data the model error for the Xunwu ore sample is found to be less than 5%. The proposed model is more accurate compared with the Kerr model. The two-parameter model proposed in this study provides theoretical support for the numerical simulation of column leaching (in-situ leaching) of ion-adsorption type rare earth ores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.