Abstract

We describe a novel two-parameter continuation method combined with a spectral-collocation method (SCM) for computing the ground state and excited-state solutions of spin-1 Bose–Einstein condensates (BEC), where the second kind Chebyshev polynomials are used as the basis functions for the trial function space. To compute the ground state solution of spin-1 BEC, we implement the single parameter continuation algorithm with the chemical potential μ as the continuation parameter, and trace the first solution branch of the Gross–Pitaevskii equations (GPEs). When the curve-tracing is close enough to the target point, where the normalization condition of the wave function is going to be satisfied, we add the magnetic potential λ as the second continuation parameter with the magnetization M as the additional constraint condition. Then we implement the two-parameter continuation algorithm until the target point is reached, and the ground state solution of the GPEs is obtained. The excited state solutions of the GPEs can be treated in a similar way. Some numerical experiments on Na23 and Rb87 are reported. The numerical results on the spin-1 BEC are the same as those reported in [10]. Further numerical experiments on excited-state solutions of spin-1 BEC suffice to show the robustness and efficiency of the proposed two-parameter continuation algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.