Abstract

Multi-robot task assignment is one of the main processes in an intelligent warehouse. This paper models multi-robot task assignment in an intelligent warehouse as an open-path multi-depot asymmetric traveling salesman problem (OP-MATSP). A two-objective integer linear programming (ILP) model for solving OP-MDTSP is proposed. The theoretical bound on the computational time complexity of this model is O(n!). We can solve the small multi-robot task assignment problem by solving the two-objective ILP model using the Gurobi solver. The multi-chromosome coding-based genetic algorithm has a smaller search space, so we use it to solve large-scale problems. The experiment results reveal that the two-objective ILP model is very good at solving small-scale problems. For large-scale problems, both EGA and NSGA3 genetic algorithms can efficiently obtain suboptimal solutions. It demonstrates that this paper’s multi-robot work assignment methods are helpful in an intelligent warehouse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.