Abstract

We present an approach for repartitioning existing lower-order finite element mesh based on quadrilateral or triangular elements for the linear and nonlinear volumetric locking-free analysis. This approach contains two levels of mesh repartitioning. The first-level mesh re-partitioning is an h-adaptive mesh refinement for the generation of a refined mesh needed in the second-level mesh coarsening. The second-level mesh coarsening involves a gradient smoothing scheme performed on each pair of adjacent elements selected based on the first-level refined mesh. With the repartitioned mesh and smoothed gradient, the equivalence between the mixed finite element formulation and the displacement-based finite element formulation is established. The extension to nonlinear finite element formulation is also considered. Several linear and non-linear numerical benchmarks are solved and numerical inf-sup tests are conducted to demonstrate the accuracy and stability of the proposed formulation in the nearly incompressible applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.