Abstract

The increasing capacity of NAND flash memory leads to large RAM footprint on address mapping in the Flash Translation Layer (FTL) design. The demand-based approach can reduce the RAM footprint, but extra address translation overhead is also introduced which may degrade the system performance. This paper proposes a two-level caching mechanism to selectively cache the on-demand page-level address mappings by jointly exploiting the temporal locality and the spatial locality of workloads. The objective is to improve the cache hit ratio so as to shorten the system response time and reduce the block erase counts for NAND flash memory storage systems. By exploring the optimized temporal-spatial cache configurations, our technique can well capture the reference locality in workloads so that the hit ratio can be improved. Experimental results show that our technique can achieve a 31.51% improvement in hit ratio, which leads to a 31.11% reduction in average system response time and a 50.83% reduction in block erase counts compared with the previous work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.